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Abstract 

ZnS polytypes are formed by martensitic transforma- 
tions from their common parent, the hexagonal 2H 
structure, and their crystallographic characteristics 
depend on the detailed transformation mechanism. 
The ratio of the number of rhombohedral to the 
number of non-rhombohedral  polytypes in the popu- 
lation of the currently identified polytypes is 1.5. It 
was formerly argued that the expected ratio is 2 and 
that the discrepancy indicates that the population is 
biased. An analysis based on the established proper- 
ties of martensitic transformations in ZnS shows that 
the ratio of rhombohedral to non-rhombohedral  poly- 
types depends on the transformation probability by 
a dislocation dipole; it is further shown that the 
experimental ratio of 1.5 can be derived by assuming 
the plausible value of 0.8 +0.1 for this probability. 

Introduction 

Martensitic transformations in vapor-phase-grown 
ZnS crystals are responsible for the formation of a 
large number of stable close-packed structures, 
namely polytypes. Their crystallographic characteris- 
tics depend on the detailed mechanism of the trans- 
formation. It was demonstrated that a statistical 
analysis of such characteristics can lead to a better 
understanding of that mechanism (Mardix, 1986a). 
The population which the analysis was based on was 
the set of all identified polytypes; it is clearly essential 
that this population constitutes an unbiased sample. 

One of the characteristics which can be studied is 
the ratio NR/NL of the number of rhombohedral to 
non-rhombohedral  structures in a given population. 
A claim was made (Steinberger, 1983) that the 
expected value of this ratio in an unbiased population 
of ZnS polytypes should be NR/NL=2. The dis- 
crepancy between the value of 1.6 found for the 
population of all identified polytypes at the time of 
the above publication and the expected value of two 
led Steinberger to the conclusion that a bias exists in 
the procedure for selecting polytypes for iden- 
tification. In a more recent list including a larger 
number of identified polytypes (Mardix, 1986a), the 
experimental value of the ratio NR/NL is 1-5, giving 
an even larger apparent discrepancy. 

We shall show that the transformation mechanism 
of ZnS polytypes may lead to a wide range of values 
of NR/NL and that the experimental ratio of 1-5 is 
well within that range. Furthermore, we shall show 
that the experimental value of NR/NL can be used 
to find an approximation for the transformation prob- 
ability of a polytype by a dipole of partial dislocation. 

Polytype formation in ZnS crystals 

A review of the crystallography of vapor-phase-grown 
ZnS (Mardix, 1986b) describes in detail the formation 
mechanism of its polytypes and brings a large volume 
of substantiative experimental evidence. We give here 
a summary of the mechansim. 

ZnS crystals grow at a temperature of about 1340 K 
and have the hexagonal 2H close-packed structure. 
A region of a crystal in which polytypes are found 
includes a single screw dislocation with a Burgers 
vector parallel to the crystal c axis. The magnitude 
of the Burgers vector is given by IB[ = 2nco where n 
is an integer and Co is the basal plane interlayer 
distance. The average value of n for the polytypes 
identified so far is about 20 and the highest value is 
64. The existence of the screw dislocation makes the 
topology of the basal planes of a polytype resemble 
that of an interleaved set of helicoidal surfaces all 
with the same pitch IBI. 

As the crystals cool down to room temperature, 
basal-plane Shockley partials start moving, leaving 
behind them a spreading stacking fault. Owing to the 
helicoidal nature of the basal planes, the partials will 
find themselves climbing in both directions of the c 
axis, creating stacking faults 2n layers apart. The 
resulting transformed structure will have the same 
basic periodicity as its parent, namely IBI/co or 2n. 

The driving force for the moving partials comes 
from the free-energy difference between the trans- 
formed and parent structures. As the stability of the 
hexagonal stacking goes down with temperature one 
finds that the net result of the transformation is to 
reduce the number of hexagonally stacked layers (h 
layers), converting them to cubically stacked ones (c 
layers). The transformation process can continue 
while there are still h layers left which can be con- 
verted with a decrease in free energy. The probability 
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of the above transformation will strongly depend on 
the magnitude of the energy decrease. 

Transformations by moving partials 

Both the Pauling (1945) and the Zhdanov (1945) 
notations will be used here to describe the stacking 
sequence of a close-packed structure. The Pauling 
notation gives the sequence of h and c layers in the 
structure while the Zhdanov notation specifies the 
consecutive distances between h layers. For example, 
the periodic sequence . . .  hch, hccchcchch, h c c . . . ,  
where the commas delimit one period, will be pre- 
sented as 4 3 2  1 in the Zhdanov notation. The 
Zhdanov symbol of a periodic structure must have 
an even number of elements. The property of a close- 
packed structure with the Zhdanov symbol 
al ,  a 2 , . . . ,  an to be rhombohedral (R3m) or non- 
rhombohedral (P3 m 1 or P63 mc) can be derived from 
the difference 

n/2 
D = E (a2k -- a2k-l). 

k = i  

If D = 0 (mod 3), the structure is non-rhombohedral 
(L structure); it is rhombohedral (R) for D ~ 0 
(mod 3). 

It should be noted that in the special case of poly- 
types with an even number of layers in their basic 
period, which is the case for all known ZnS polytypes, 
D is an even number; particularly D = 0 for the parent 
hexagonal 2H structure. A transformation event tak- 
ing place by the motion of a single Shockley partial 
affects a pair of neighboring layers, an h layer of the 
pair transforms into a c layer and vice versa. There 
are, therefore, four possible pair transformations 
associated with such an event, hh to cc, hc to ch, ch 
to hc and cc to hh, each of which changes the value 
of D by A D =  +2. A structure with D = 0  (mod 3) 
(an L structure) can therefore transform to an R 
structure only, while an R structure [D # 0 (mod 3)] 
can transform either to an L or to another type of R 
structure: a structure with D = 1 (mod 3) may trans- 
form to one with D = 2 (mod 3) and vice versa. 

In addition to transformations by a single Shockley 
partial, dipoles of partials can be involved in a trans- 
formation event (Steinberger, 1973). A dipole consists 
uf two partials with Burgers vectors in opposite direc- 
tions residing on neighboring planes with a short 
distance between them. 

While the crystallographic effect of a transforma- 
tion taking place by a single partial dislocation is to 
sheer the crystal in the direction perpendicular to its 
c axis, the motion of a dipole results in the sliding 
of a single layer, or a group of them, between the two 
parts of the crystal on both sides. The strain energy 
associated with a dipole is lower than that of two 
single partials far away from each other, favoring its 
formation. 

The transformation by a dipoie can be considered 
as a single event composed of two transformations 
by single partials. Such a transformation, in contrast 
to that created by a single partial, does not change 
the structural symmetry, L and R structures transform 
respectively into other L and R structures of the same 
type. 

The martensitic transformation from the parent 2H 
structure ( . . .  hhhhh . . . )  to the final room-temperature 
stable polytype can be broken into a chain of transfor- 
mation events. Each event can be caused either by 
the motion of a single partial or by a dipole. The 
condition for an event to happen with a high probabil- 
ity is that it will lead to a reduction of the free energy 
of the crystal, which implies that the number of h 
layers must go down after each transformation event. 
Both possible types of transformation, by a single 
partial or by a dipole, can change the number of h 
layers by zero, two or four, depending on the geometry 
and location of the transformation dislocations. We 
shall assume that only transformations resulting in a 
reduction in the number of h layers happen. Thus 
the number of h layers in the basic period has to go 
down by either two or four after each transformation 
event. 

An important point to notice is that the chain of 
transformation events will consist of a small number 
of events. For a complete transformation from the 
hexagonal 2H to a cubic structure there should be 
about N / 3  such events, where N is the number of 
layers in the basic period. If multipoles take part in 
the transformation mechanism the number of events 
will be even smaller. As the average number of h 
layers in the population of identified ZnS polytypes 
is about four and most of their basic periods fall 
between eight and 40, one can estimate the number 
of transformation events forming the known ZnS 
polytypes to be somewhere between two and 12 with 
an average of about seven. 

Symmetry of the identified polytypes 

We shall consider the system S of polytypes formed 
during the martensitic transformations of the parent 
2H to the room-temperature stable structure. The two 
states in which the system can be found are the 
rhombohedral (R) and non-rhombohedral (L). After 
each of the transformation events t = 0, 1, 2 , . . . ,  n, S 
can be either in an R state or in an L state. We shall 
denote by P0 the probability that the system which 
at t = k is in the state i will transform at t = k + 1 to 
the state j. The matrix P = (pij) has four elements: 

p=(PLL PLR) 
\PRL Pnn/" 

Following the discussion in the former sections we 
shall now list the assumed properties of the system S. 

1. At t =0,  S is in state L. 
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2. The number  of events n is finite. 
3. n depends  on M, the number  of layers in the 

basic unit, and is approximate ly  equal to M/3. 
4. The value of  n for most structures in the popula-  

tion of  identified ZnS polytypes is between two and 
12 with an average of  seven. 

5. PLL = P, where p is the probabil i ty that the trans- 
formation event was due to a dipole. Note that AD -- 0 
for a t ransformat ion by a dipole. 

6. PLR = 1 - p  is the probabi l i ty  that a single partial  
is responsible for the t ransformat ion event (D  # 0 for 
a t ransformat ion by a single dislocation).  

7. PRL = (1 -p) /2 .  The value of AD for a transfor- 
mat ion by a single partial  was given as AD = +2. We 
shall assume that a t ransformat ion with AD = +2 has 
the same probabi l i ty  as one with AD = - 2 .  One of  
the above will t ransform an R structure to an L 
structure while the other will t ransform one type of  
R structure [ D  = 1 (mod 3) or D = 2 (mod 3)] to the 
other type of  R structure. 

8. PRR = (1 + p ) / 2 .  
Let pL(k) and pg(k) denote the probabil i t ies  that, for 
t = k, S is in states L and R, respectively. From 1 it 
follows that: 

9. pL(0) = 1; p R ( 0 ) = 0 ;  
from 5 and 7: 

10. p L ( k ) = p L ( k - 1 ) p + p a ( k - 1 ) ( 1 - p ) / 2 ;  
and from 6 and 8: 

11. p R ( k ) = p L ( k - 1 ) ( 1 - p ) + p g ( k - 1 ) ( l + p ) / 2 .  
We are interested in the series Q which has as 

its elements the ratios Qk =pR(k)/pL(k). Qk is the 
expected ratio of  rhombohedra l  to non- rhombohedra l  
structures in a randomly  selected popula t ion  of  poly- 
types formed by k t ransformat ion events. Consider ing 
p (the t ransformat ion probabi l i ty  by a dipole) as a 
parameter,  we notice that Qk = Q k ( P ) .  It should be 
noted that the ratio NR/NL for a given popula t ion  is 
expected to be equal to Qk(P) where k is the average 
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Fig. 1. The calculated ratios NR/Nt. of the number of rhombo- 
hedral to non-rhombohedral polytypes versus the number of 
transformation events t necessary to form the polytypes, for the 
range of transformation probability by a dislocation dipole, p, 
of 0.5 to 0.9. The values of p are denoted in the figure. 

value of  the number  of t ransformat ion events which 
took place during the creation of  the popula t ion  and 
p is the probabi l i ty  of  a structure of  this popula t ion  
to be t ransformed by a dipole. NR/NL is presented 
in Fig. 1 for the range of  p values 0.5 to 0.9. Values 
of  NR/NL with the same p value are sequential ly 
connected by straight segments. From the experi- 
mental  value of 1-5 for NR/NL and the average value 
of  seven for t, we see from Fig. 1 that p is approxi-  
mately 0.8. It should be noted that for NR/Nt_ = 1-5 
the selected value of  p is not very sensitive to the 
number  of  t ransformat ion events, a value of  p = 
0 .8+0-1 can account for the experimental  ratio of 
NR/NL for a wide range of  t values, 4 -  t <- 14, which 
is the expected range of  the number  of  t ransformat ion 
events in the exper imental  populat ion.  

From Fig. 1 we can also see that NR/NL converges 
to two for all values of  p, more rapidly for smaller  
values. 

D i s c u s s i o n  

The model  used to derive the dipole t ransformat ion 
probabi l i ty  p was based on some s implifying assump- 
tions. The most significant is the impl ied  assumpt ion  
that the probabi l i ty  p stays constant throughout  the 
t ransformat ion process. As a matter of  fact, one can 
expect this probabi l i ty  to be high at the initial stages 
and to go down at the final stages as the number  of  
h chains containing more than two h layers becomes 
smaller. Use of  a more sophist icated model  may 
change somewhat  the average value of  p but with the 
available popula t ion  of  identified structures the 
change is not expected to be statistically significant. 

The reasoning which led to the conclusion that the 
ratio NR/NL should be two was stated as follows 
(Steinberger, 1983): 

'According to the model  discussed the polytype 
resulting from the t ransformat ion will be trigonal or 
hexogonal ,  i f  after the introduct ion of  the stacking 
faults within a block of  height mco a layer sequence 
is formed with the m + 1-th layer in the same position 
(A, B or C)  as the first one, otherwise it will be 
rhombohedra l .  With a r andom distr ibution of  stack- 
ing faults the probabi l i ty  for this is obviously 1/3. It 
follows that rhombohedra l  polytypes ought to occur 
twice as frequently as trigonal ( including hexagonal)  
ones. '  (m in this s tatement denotes the number  of  
layers in the basic period, denoted in this paper  by M.) 

The main  fault  in the above reasoning is the impl ied  
assumpt ion that the presented model  of  polytype 
formation leads to a random distr ibution of  stacking 
faults. This would have been correct if  at each stage 
of the t ransformat ion the stacking fault had  been 
introduced independent ly  of  the parent  structure and 
in such a way that the' stacking fault would have the 
same a priori probabi l i ty  to be introduced and spread 
between any two layers in the basic period. The 
experimental  evidence against  this mode of  transfor- 
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mation and against a random distribution of stacking 
faults in the polytypes is overwhelming. 

The observation (see Fig. 1) that the asymptotic 
value of NR/NL is two indicates that the transforma- 
tion mechanism does contribute to the randomization 
of layer positions so that for structures created by a 
large number of transformations the type of the layer 
in the M + 1 ,position does indeed become randomly 
related to the first one. This however does not imply 
that the stacking faults are randomly distributed. 
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Abstract 

Polarization-dependent resonant Bragg diffraction in 
crystals is investigated both theoretically and experi- 
mentally. In order to describe the effects of 
anisotropic anomalous dispersion on intensity and 
polarization of kinematically diffracted X-radiation, 
a general scattering model is developed on the basis 
of site-symmetry-compatible second-rank scattering- 
factor tensors for the absorbing atoms. For conven- 
tional four-circle single-crystal diffractometry it is 
shown that intensity and polarization of the diffracted 
beam can be predicted as functions of both crystal 
orientation and polarization of the incident radiation. 
In principle, anisotropy of anomalous dispersion may 
affect any reflection. In particular, it can give rise to 
the observation of intensities for reflections being 
systematically extinct by space-group symmetry. Both 
effects are discussed. Experimental proof of the 
model's validity was obtained by synchrotron-radi- 
ation X-ray diffraction measurements of mainly 'for- 
bidden' reflections in cubic cuprite, Cu20 and 
tetragonal rutile type TiO2 and MnF2. The experi- 
ments were carried out at the respective K-absorption 
edges of the cations using different instruments at 
HASYLAB/DESY during dedicated mode of DORIS 
II (3.78 GeV). Significant anisotropy of anomalous 
dispersion due to excitation of K electrons into p 
states was observed in each case, allowing studies of 
the dependence of 'forbidden' reflection intensities 
on both radiation energy and rotation (gt) around 
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the scattering vector h. Comparison of the observa- 
tions with the analytical intensity functions derived 
from the scattering model shows full agreement on a 
relative scale. For cuprite, estimates of the 
anisotropies of the real and imaginary components 
of the anomalous dispersion of Cu were obtained 
from the allowed reflection 330. The values derived 
from two different experiments (energies) are f ' =  
-0.56,  -0.35 and f " = - 0 . 2 3 ,  0.0 electrons, respec- 
tively. 

Introduction 
The anisotropy of the anomalous dispersion (AAD) 
of X-rays is an energy-dependent resonance effect 
which is likely to occur in the vicinity of an absorption 
edge of a bonded atom. As a pure consequence of 
chemical bonding it reflects two phenomena in the 
XANES and EXAFS regions, respectively: 

(i) dipole and (to a much smaller extent) quad- 
rupole transitions from the initial 'core' state to 
excited states which are vacant, allowed and related 
to the local symmetry and the chemical environment 
of the absorbing 'edge' atom, 

(ii) interference of the outgoing wave of 'true' 
photoelectrons, i.e. with positive energy, with the 
wave backscattered from surrounding neighbor 
atoms. 

In crystalline material of lower than cubic sym- 
metry both effects can manifest themselves in an 
anisotropic refractive index and consequently in 
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